Enabling Pump Technologies for Deep Throttle Ascent/Descent Engine Operation, Phase I

NASA

Completed Technology Project (2015 - 2015)

Project Introduction

Methane fueled ascent / descent space engines in the 10,000 to 25,000 lbf thrust class require deep throttle capability, placing unique challenges on the turbopumps. Previous engine throttle-ability studies have required both LOX and fuel turbopumps to operate at ratios of volumetric flow rate to shaft speed (Q/N) of 0.2 to over 1 for 10:1 engine throttle operation. Such operational ranges are particularly difficult for pump axial inducers and vaned radial diffusers. Both are prone to fluid separation and stall at low Q/N operation and excessive passage blockage due to cavitation at high Q/N values. The proposed innovation combines two separate technologies to address the inherent design shortcomings of the inducer and diffuser under operation at both low and high Q/N extremes.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Barber-Nichols, Inc.	Lead Organization	Industry	Arvada, Colorado
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Enabling Pump Technologies for Deep Throttle Ascent/Descent Engine Operation, Phase I

Table of Contents

Primary U.S. Work Locations
and Key Partners 1
Project Transitions 2
Images 2
Organizational Responsibility 2
Project Management 2
Technology Maturity (TRL) 2
Technology Areas 3
Target Destinations 3

Small Business Innovation Research/Small Business Tech Transfer

Enabling Pump Technologies for Deep Throttle Ascent/Descent Engine Operation, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations	
Alabama	Colorado

Project Transitions

C

June 2015: Project Start

December 2015: Closed out

Closeout Summary: Enabling Pump Technologies for Deep Throttle Ascent/Des cent Engine Operation, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138976)

Images

Briefing Chart Image

Enabling Pump Technologies for Deep Throttle Ascent/Descent Engine Operation, Phase I (https://techport.nasa.gov/imag e/128929)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Barber-Nichols, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Scott R Sargent

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Enabling Pump Technologies for Deep Throttle Ascent/Descent Engine Operation, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

